GACV for partially linear support vector regression
نویسندگان
چکیده
منابع مشابه
Robust Linear and Support Vector Regression
ÐThe robust Huber M-estimator, a differentiable cost function that is quadratic for small errors and linear otherwise, is modeled exactly, in the original primal space of the problem, by an easily solvable simple convex quadratic program for both linear and nonlinear support vector estimators. Previous models were significantly more complex or formulated in the dual space and most involved spec...
متن کاملLarge-scale linear support vector regression
Support vector regression (SVR) and support vector classification (SVC) are popular learning techniques, but their use with kernels is often time consuming. Recently, linear SVC without kernels has been shown to give competitive accuracy for some applications, but enjoys much faster training/testing. However, few studies have focused on linear SVR. In this paper, we extend state-of-the-art trai...
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملSupport Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized Gacv 1 1 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized Gacv
This chapter is an expanded version of a talk presented in the NIPS 97 Workshop on Support Vector Machines. It consists of three parts: (1) A brief review of some old but relevant results on constrained optimization in Reproducing Kernel Hilbert Spaces (RKHS), and a review of the relationship between zero-mean Gaussian processes and RKHS. Application of tensor sums and products of RKHS includin...
متن کاملPartially linear censored quantile regression.
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2013
ISSN: 1598-9402
DOI: 10.7465/jkdi.2013.24.2.391